
Computer implementation of a

philosophy of mathematics:

reflections on the Lestrade

dependent type theory and

theorem prover

M. Randall Holmes

virtual logic seminar 3/20/2020; some errors

in the original slides are corrected. The

extended proof at the end might be

interesting additional reading.

preparing part 2 for the seminar of 4/9/2020.

1



Abstract

This is a topic I have talked about before. Dur-

ing my sabbatical I have been reimplement-

ing my dependent type theory prover from the

ground up and working on a paper about it. I’ll

talk about what the dependent type theory is,

exhibit something about what the implemen-

tation looks like, and discuss the grounds for

the assertion implicit in the title that I am in

fact implementing some ideas about philoso-

phy of mathematics in the type theory and the

software.



An overview

There are three levels to what I am talking

about:

1. A view of the philosophy of mathematics

2. A dependent type theory, which I call the

Lestrade∗ logic.

3. Computer software for development and

display of Lestrade declarations, which I

call the Lestrade Type Inspector.

∗I am already guilty of calling a theorem prover Watson,
and I hope I may be forgiven for another literary play
on my name.

2



A philosophical issue, with per-
haps dubious proposals

I shall begin at the top level, with a philosoph-

ical question. This is the issue of whether we

are dealing in mathematics with actual infini-

ties.

The current style is to assume flatly that we

are postulating actual infinities. For example,

the function f(x) = x2+1 (for x a real variable)

is implemented for us by the set

{(x, y) : x ∈ R ∧ y = x2},

a table of all input and output values of the

function of (uncountable!) infinite size.

3



A hint at a different view is found in the rep-

resentation of f as (λx : x2 + 1), an expression

with a hole in it. This expression is of course

a surveyable finite object, in which x can be

replaced by any notation r for a real number

to give the function output r2 + 1 associated

with r as input.

At the risk of withering scorn directed at us

from beyond the grave by Bertrand Russell,

we propose to think of the input r as an ar-

bitary real number, with which we can asso-

ciate a still “arbitrary” number r2 +1 (again, a

real number of dubious ontological status, not

an expression), and with the partially arbitrary

r2 + 1 we can further associate the function

(r 7→ r2 + 1), which is a definite object with-

out the taint of vagueness associated with the

input and output expressions. How is sense to

be made of such an account?

4



We propose to justify this by traffic with a

scheme of possible worlds. Following Lestrade

parlance, we refer to the worlds as “moves”.

In move 0, we find everything fixed and im-

mutable which we have encountered so far, in-

cluding such items as 3, the operation of ad-

dition, and indeed (r 7→ r2 + 1). In move 1, we

can find arbitrary objects of any sort we have

postulated, such as the arbitrary real number r

(its sort Real is found at move 0), and objects

like r2 + 1 with more complicated representa-

tions. The modality here might be taken to

be temporal: the arbitrary real number r may

be thought of as “any real number we may

encounter in the future”.

5



Now we provide a basic construction taking

an object in move 1 depending on completely

arbitrary variables in move 1 to the function

implementing it. If we ever encounter a real

number r, we can further construct r2+1, itself

a move 1 variable entity, but not a completely

arbitrary one. The way in which r2+1 depends

on r, which we may write ((r : Real) 7→ r2 +1),

is a definite function entity in move 0: the

process of abstraction eliminates its variable

character.

6



I did mention withering criticism from the shade

of Bertrand Russell. Bertie would point out

now that my arbitrary real number r is a quite

incoherent object? Is it positive? negative?

Greater than or less than 1? Rational or irra-

tional?

I address this question indirectly by giving an

account of the humble operation of division.

I pull an arbitrary real r and an arbitrary real

s out of the inchoate sea of move 1. I can-

not immediately postulate r
s, because s might

be zero. But suppose in addition that I have

evidence e that s 6= 0. I can postulate an op-

eration of division:

Divide(r : Real, s : Real, e : that s 6= 0)

can be postulated.

7



What is this s 6= 0? Of course it is a compos-

ite expression, ¬s = 0, of type prop, a propo-

sition. It is a move 1 entity, depending on

the completely arbitrary real s. It is obtained

by applying negation (whatever it may be) to

s = 0. So we see ¬ : ((p : prop) ⇒ prop)

and =: ((r : Real), (s : Real) ⇒ prop) as pre-

supposed basic notions (themselves entities at

move 0, though here we have instances of their

use at move 1).

The truly interesting move here is the intro-

duction of the variable/arbitrary entity e of

type that s 6= 0. With any proposition p we

are associating a type that p of evidence for

p (I almost said that e is a proof of p, and I

almost said that e inhabits that p; I may yet

say such things but there are reasons to resist

these manners of speaking).

8



And our answer to Bertie’s shade is that we

can postulate whatever partial information we

need about arbitrary objects in move 1 (or any

move of higher index) in the form of evidence

for the truth value of propositions of interest

about those arbitrary objects.



You may notice that I have introduced all ob-
jects as sorted. In the usual foundations of
mathematics in set theory, we do of course talk
about mathematical objects of various sorts,
but we have been trained to think of all these
objects as belonging to a common sort of sets,
and further we tend to think of the sorts them-
selves as sets! This is not the basic view of the
Lestrade logic (though Lestrade does support
implementation of the usual set theoretic view
of the world, as you will see if you have pa-
tience with me).

We have just introduced a subtle and power-
ful feature of the Lestrade logic’s sorts/types:
Lestrade is dependently typed, meaning that
there are types which depend on variables, and
there are functions in which the type of an ar-
gument later in its argument list (or of the
output) may depend on an earlier argument,
as in the case of our presentation of the divi-
sion function.

10



There is no reason for the system of possible

worlds (levels of vagueness or futurity) to be

confined to moves 0 and 1. If we have an ar-

bitrary real number r (move 1) we certainly

have a function (x 7→ x+ r) (“add r”). How is

this to be understood in our scheme? Reach

into move 1 and choose the arbitrary r. Reach

further into move 2 (where r appears as an

(unknown from our move 0 standpoint) con-

stant!), introduce a variable object x at move

2 and form the expression x+r, a move 2 vari-

able expression in which x is varying and r is

supposed held fixed. Now the same procedure

we have postulated for forming functions ad-

mits the formation of (x 7→ x+r), the function

of adding r, at move 1.

11



The introduction of variable objects at differ-

ent moves corresponds to phenomena which

we expect our students to understand in un-

dergraduate mathematics. Consider a function

z = ax + by + c, whose graph is a plane. Can

you see that this is a move 1 entity (depend-

ing on the unknown constants a, b, c which are

move 1 real variables) formed by abstraction

from the move 2 entity ax + by + c, in which

x and y are move 2 variables? We quite of-

ten tell our students that letters are constants

which are clearly (even to them) themselves

variables. Here we formalize a relative notion

of variable status.

(I could pause and actually declare the function

z = ax+ by + c here)

12



We give a formal account of the Lestrade logic.

Referents of general terms of our language are

entities (further subdivided into objects and

functions) and sorts (entities have sorts, which

are the types of the Lestrade scheme).

Objects have object sorts. No specific objects

are postulated by the Lestrade logic, postula-

tion of specific objects being the privilege of

Lestrade theories. There are specific object

sorts and object sort constructions provided by

Lestrade, which are exhaustive: all objects are

of these sorts.

13



1. There is a sort prop of propositions.

2. There is a sort type of “type labels”: an ex-

ample would be Real in the examples above.

We call objects of sort type “type labels”

because we prefer to view a sort as a fea-

ture of an entity rather than a collection of

entities (as one of our philosophical aims is

to avoid the need to postulate actual infini-

ties).

3. There is a sort obj of “untyped mathemati-

cal objects”. In an implementation of ZFC,

the sets might be of sort obj.

4. For p of sort prop, there is a sort that p.

This is the sort of evidence for the truth of

p. We could say “proofs” but this would

commit us to a constructive view of logic,

14



and the Lestrade logic does not commit us

to such a view (demonstrating that such

a philosophical approach does not commit

us to constructive mathematics is one of

our philosophical aims).

5. For τ of sort type, there is a sort in τ .

If Real is the type label of real numbers

(an object of sort type), then the specific

object π is of sort in Real. In the discussion

above, the references to the sort of real

numbers are actually references to in Real,

but it is useful to have objects associated

with sorts.

That is the complete scheme of object sorts.

Of course, it is expandable by introducing propo-

sitions and type labels.



In declaring functions, we get into more fiddly

issues, and I may skate over some technicalities

unless challenged.

Each Lestrade function has a fixed arity n (it

takes n arguments). The arguments may be of

object or function sorts: the output is always

of an object sort.

The shape of our notation for a Lestrade func-

tion sort is ((x1, τ1), . . . , (xn, τn)⇒ (−, τ)). Each

τi is an object or function sort, and xi is a vari-

able of type τi. τ is an object sort. Each τi
may depend on variables xj with j < i. τ may

depend on any or all of the xi’s. The variables

xi are bound in this notation.

15



If f is of type ((x1, τ1), . . . , (xn, τn) ⇒ (−, τ))

then f(t1, . . . , tn) is well-formed iff τ1 is the

sort of t1 and either n = 1 and f(t1) is of

sort τ [t1/x1] or n > 1 and f∗(t2, . . . , tn) is well-

formed, where f∗ is of sort

((x1, τ1[t1/x1]), . . . , (xn, τn[t1/x1])⇒ (−, τ [t1/x1)) :

f(t1, . . . , tn) has the same sort as f∗(t2, . . . , tn).

[t1/x1] denotes substitution of t1 for x1, involv-

ing the usual formalities about bound variable

renaming.

16



Terms for objects are always either atomic or
application terms f(t1, . . . , tn) in which f is al-
ways an atomic function term and each ti is an
object or function term of appropriate type.

Terms for functions are either atomic or of the
form ((x1, τ1), . . . , (xn, τn) ⇒ (δ, τ)) [this is a
lambda term]. This term is of type

((x1, τ1), . . . , (xn, τn)⇒ (−, τ)).

The result of replacing f with

((x1, τ1), . . . , (xn, τn)⇒ (−, τ))

in f(t1, . . . , tn), which only makes sense if f has
the correct type and f(t1, . . . , tn) is well-formed
as indicated above, is δ[t1/x1] if n = 1 and
otherwise the same as the result of replacing
f∗ with

((x1, τ1[t1/x1]), . . . , (xn, τn[t1/x1])

⇒ (δ[t1/x1], τ [t1/x1))

in f∗(t2, . . . , tn).

17



This is the dependently typed version of the

usual procedure of beta reduction for evalu-

ating applications of lambda terms: and note

that we follow Russell in his Principia in not

allowing lambda terms∗ in applied position at

all: substitution of a lambda term for an ap-

plied function variable triggers beta reduction.

We have now actually described the entire Lestrade

logic, except for observations that terms with

variable binding are equivalent where this can

be established by renaming bound variables,

and it is possible to define atomic object and

function terms, and terms which can be shown

to be equivalent by definitional expansion to

the same form are equivalent. Computational

equivalence of types is required for recognition

that certain terms are well-typed; this is why

this has to be mentioned.

∗what he calls “propositional functions”

18



Some declarations in logic

In the last part of today’s talk, we develop ba-

sic declarations on logic in the Lestrade Type

Inspector. We have aims at two levels: one

is to show what the Inspector is like, and the

other is to demonstrate what it looks like to

prove a theorem in this environment.

begin Lestrade execution

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> postulate & p q prop

19



&: [(p_1 : prop), (q_1 : prop) =>
(--- : prop)]

{move 0}
end Lestrade execution

We declare propositional variables p and q and

use them as parameters in the declaration of

conjunction (and).



begin Lestrade execution

>>> declare pp that p

pp : that p

{move 1}

>>> declare qq that q

qq : that q

{move 1}

>>> postulate Conj0 p q pp qq that p & q

Conj0 : [(p_1 : prop), (q_1 : prop), (pp_1
: that p_1), (qq_1 : that q_1) =>
(--- : that p_1 & q_1)]

{move 0}

>>> postulate Conj pp qq that p & q

Conj : [(.p_1 : prop), (.q_1 : prop), (pp_1
: that .p_1), (qq_1 : that .q_1) =>
(--- : that .p_1 & .q_1)]

20



{move 0}
end Lestrade execution



We declare variables witnessing truth of p and

q and define the rule of conjunction. This rule

says that if p and q are true, p ∧ q is true.

So it has four arguments, p, q, pp, qq, but the

first two can be deduced from the sorts of the

last two, and we show that the prover can ac-

tually detect such implicit arguments. Notice

that the second version Conj is declared with

two parameters, but the system detects that

it has two more (the implicit parameters being

adorned with dots).



begin Lestrade execution

>>> declare rr that p & q

rr : that p & q

{move 1}

>>> postulate Simp1 rr that p

Simp1 : [(.p_1 : prop), (.q_1 : prop), (rr_1
: that .p_1 & .q_1) => (--- : that
.p_1)]

{move 0}

>>> postulate Simp2 rr that q

Simp2 : [(.p_1 : prop), (.q_1 : prop), (rr_1
: that .p_1 & .q_1) => (--- : that
.q_1)]

{move 0}
end Lestrade execution

And here we declare the rules of simplification.

21



Declarations for implication

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> declare pp that p

pp : that p

{move 1}

>>> postulate -> p q prop

22



->: [(p_1 : prop), (q_1 : prop) =>
(--- : prop)]

{move 0}

>>> declare ss that p -> q

ss : that p -> q

{move 1}

>>> postulate Mp pp ss that q

Mp : [(.p_1 : prop), (.q_1 : prop), (pp_1
: that .p_1), (ss_1 : that .p_1
-> .q_1) => (--- : that .q_1)]

{move 0}
end Lestrade execution

We declare the operation of implication and
the rule of modus ponens (which you may no-
tice has implicit arguments). The clearcurrent

command clears the variable declarations in
move 1; we could use a style in which we had
continuously accumulating declared parameters,
but this would lead to memory challenges.



The rule for proving implications (the familiar
deduction theorem) is of quite a different kind.

begin Lestrade execution

>>> open

{move 2}

>>> declare pp1 that p

pp1 : that p

{move 2}

>>> postulate ded0 pp1 that q

ded0 : [(pp1_1 : that p) => (---
: that q)]

{move 1}

>>> close

{move 1}

>>> postulate Ded0 ded0 that p -> q

23



Ded0 : [(.p_1 : prop), (.q_1 : prop), (ded0_1
: [(pp1_2 : that .p_1) => (---

: that .q_1)]) => (--- : that
.p_1 -> .q_1)]

{move 0}

>>> declare ded [pp => that q]

ded : [(pp_1 : that p) => (--- : that
q)]

{move 1}

>>> postulate Ded ded that p -> q

Ded : [(.p_1 : prop), (.q_1 : prop), (ded_1
: [(pp_2 : that .p_1) => (--- : that

.q_1)]) => (--- : that .p_1
-> .q_1)]

{move 0}
end Lestrade execution



I present the declaration of rule of deduction

in two different styles. The second is the one

I would normally use. The first makes a philo-

sophical point. Notice that in the second ap-

proach I declare the variable ded0 in the func-

tion type ((pp : that p)⇒ that q). This requires

me as the user to write a term representing this

function sort.

There is a style, illustrated here, in which the

user can avoid ever writing function sorts or

lambda terms (though they inevitably show up

in output). In this case, we open a new envi-

ronment (go into move 2) and declare ded0 as

a primitive (so it shows up in move 1); closing

the environment leaves ded0 as a variable of

function type in move 1. We are trading ex-

plicit variable binding in terms for the implicit

variable binding involved in the move system.



Now we prove a theorem!

begin Lestrade execution

>>> comment We use the goal command to \
display what we want to prove .We have \
found this useful in practice for developing \
large proofs .

{move 1}

>>> goal that (p & q) -> q & p

that (p & q) -> q & p

{move 1}

>>> open

{move 2}

>>> declare thehyp that p & q

thehyp : that p & q

{move 2}

>>> goal that q & p

24



that q & p

{move 2}

>>> open

{move 3}

>>> define line1 : Simp2 thehyp

line1 : that q

{move 2}

>>> define line2 : Simp1 thehyp

line2 : that p

{move 2}

>>> close

{move 2}

>>> define conjsymm thehyp : Conj line1 \
line2



conjsymm : [(thehyp_1 : that p & q) =>
(--- : that q & p)]

{move 1}

>>> close

{move 1}

>>> define Conjsymm p q : Ded conjsymm

Conjsymm : [(p_1 : prop), (q_1 : prop) =>
({def} Ded ([(thehyp_2 : that p_1

& q_1) =>
({def} Simp2 (thehyp_2) Conj
Simp1 (thehyp_2) : that q_1 & p_1)]) : that

(p_1 & q_1) -> q_1 & p_1)]

Conjsymm : [(p_1 : prop), (q_1 : prop) =>
(--- : that (p_1 & q_1) -> q_1 & p_1)]

{move 0}

>>> declare thehyp2 that p & q

thehyp2 : that p & q

{move 1}



>>> define Conjsymm2 p q : Ded [thehyp2 \
=> Conj (Simp2 thehyp2, Simp1 thehyp2)]

Conjsymm2 : [(p_1 : prop), (q_1 : prop) =>
({def} Ded ([(thehyp2_2 : that

p_1 & q_1) =>
({def} Simp2 (thehyp2_2) Conj
Simp1 (thehyp2_2) : that q_1 & p_1)]) : that

(p_1 & q_1) -> q_1 & p_1)]

Conjsymm2 : [(p_1 : prop), (q_1 : prop) =>
(--- : that (p_1 & q_1) -> q_1 & p_1)]

{move 0}

>>> comment The same proof in an alarmingly \
compressed format, achieved by explicitly \
presenting the proof object as a term \
.

{move 1}
end Lestrade execution

Here we present a proof of the theorem (p ∧
q)→ (q ∧ p) of propositional logic. This is pre-

sented in two styles, one an extended proof

using the move system to emulate reasoning



under a hypothesis, and the other a brief pre-

sentation of the exact object which serves as

the proof as an explicit lambda term.

In this case, I would say the extended style em-

ulates what we do as mathematicians, though

the more telegraphic style might have its uses.

A philosophical point to note here is that for us

a proof is a mathematical object, and we intro-

duce it by defining it. A proof of (p∧q)→ (q∧p)

is an object of sort

that (p & q) -> q & p, and our formal proof is

the careful definition (in either style) of an ob-

ject of this type.

The exact scheme of identification of proofs

with mathematical objects is a version of the

Curry-Howard isomorphism. Typically, a proof

of p ∧ q is regarded as a pair of a proof of

p and a proof of q: Conj could be regarded



as a pair construction and Simp1 and Simp2 as
its projections (and indeed the declarations of
a primitive pair operation of ordinary objects
would be isomorphic: we could present this
in the second talk, or actually do the decla-
rations live to make this point). A proof of
p → q is usually described as a function from
proofs of p to proofs of q: we regard a proof of
p → q as produced from such a function by a
constructor Ded. This isn’t purely an accident
of our system: briefly, I’ll say that we avoid
identifying Lestrade objects and functions and
we give the former a more central ontologi-
cal status. Mathematical functions will actu-
ally be packaged as objects in the same way
in Lestrade theories which manipulate them as
sets; a sophisticated way of expressing this is
that we actually view Lestrade’s functions as
proper class functions rather than sets. In a
second talk where we present an axiomatiza-
tion of Zermelo set theory, reasons for this view
will be presented.



begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> declare r prop

r : prop

{move 1}

>>> define <-> p q : (p -> q) & q -> \
p

<->: [(p_1 : prop), (q_1 : prop) =>

25



({def} (p_1 -> q_1) & q_1 -> p_1
: prop)]

<->: [(p_1 : prop), (q_1 : prop) =>
(--- : prop)]

{move 0}

>>> declare pp that p

pp : that p

{move 1}

>>> comment this function can be used \
to force displayed types into desired \
forms .

{move 1}

>>> define Fixform p pp : pp

Fixform : [(p_1 : prop), (pp_1 : that
p_1) =>
({def} pp_1 : that p_1)]

Fixform : [(p_1 : prop), (pp_1 : that
p_1) => (--- : that p_1)]



{move 0}

>>> goal that (p -> q -> r) <-> (p & q) -> \
r

that (p -> q -> r) <-> (p & q) ->
r

{move 1}

>>> open

{move 2}

>>> declare hyp1 that p -> q -> r

hyp1 : that p -> q -> r

{move 2}

>>> goal that (p & q) -> r

that (p & q) -> r

{move 2}

>>> open



{move 3}

>>> declare hyp2 that p & q

hyp2 : that p & q

{move 3}

>>> open

{move 4}

>>> define line1 : Simp1 hyp2

line1 : that p

{move 3}

>>> define line2 : Simp2 hyp2

line2 : that q

{move 3}

>>> define line3 : Mp line1, hyp1

line3 : that q -> r



{move 3}

>>> define linea4 : Mp line2, line3

linea4 : that r

{move 3}

>>> close

{move 3}

>>> define line4 hyp2 : linea4

line4 : [(hyp2_1 : that p & q) =>
(--- : that r)]

{move 2}

>>> close

{move 2}

>>> define line5 hyp1 : Ded line4

line5 : [(hyp1_1 : that p -> q ->
r) => (--- : that (p & q) ->



r)]

{move 1}

>>> define line6 : Ded line5

line6 : that (p -> q -> r) -> (p & q) ->
r

{move 1}

>>> open

{move 3}

>>> declare hyp3 that (p & q) -> \
r

hyp3 : that (p & q) -> r

{move 3}

>>> goal that p -> q -> r

that p -> q -> r

{move 3}



>>> open

{move 4}

>>> declare hyp4 that p

hyp4 : that p

{move 4}

>>> goal that q -> r

that q -> r

{move 4}

>>> open

{move 5}

>>> declare hyp5 that q

hyp5 : that q

{move 5}

>>> open



{move 6}

>>> define line7 : Conj \
hyp4 hyp5

line7 : that p & q

{move 5}

>>> define linea8 : Mp \
line7, hyp3

linea8 : that r

{move 5}

>>> close

{move 5}

>>> define line8 hyp5 : linea8

line8 : [(hyp5_1 : that
q) => (--- : that r)]

{move 4}

>>> close



{move 4}

>>> define line9 hyp4 : Ded line8

line9 : [(hyp4_1 : that p) =>
(--- : that q -> r)]

{move 3}

>>> close

{move 3}

>>> define line10 hyp3 : Ded line9

line10 : [(hyp3_1 : that (p & q) ->
r) => (--- : that p -> q ->
r)]

{move 2}

>>> close

{move 2}

>>> define line11 : Ded line10



line11 : that ((p & q) -> r) ->
p -> q -> r

{move 1}

>>> define line12 : Fixform ((p -> \
q -> r) <-> (p & q) -> r, Conj \
line6 line11)

line12 : that (p -> q -> r) <-> (p & q) ->
r

{move 1}

>>> close

{move 1}

>>> define Exportation p q r : line12

Exportation : [(p_1 : prop), (q_1
: prop), (r_1 : prop) =>
({def} ((p_1 -> q_1 -> r_1) <->
(p_1 & q_1) -> r_1) Fixform Ded
([(hyp1_4 : that p_1 -> q_1 -> r_1) =>

({def} Ded ([(hyp2_5 : that
p_1 & q_1) =>
({def} Simp2 (hyp2_5) Mp Simp1
(hyp2_5) Mp hyp1_4 : that r_1)]) : that

(p_1 & q_1) -> r_1)]) Conj
Ded ([(hyp3_4 : that (p_1 & q_1) ->



r_1) =>
({def} Ded ([(hyp4_5 : that

p_1) =>
({def} Ded ([(hyp5_6 : that

q_1) =>
({def} hyp4_5 Conj hyp5_6
Mp hyp3_4 : that r_1)]) : that

q_1 -> r_1)]) : that p_1 ->
q_1 -> r_1)]) : that (p_1 ->

q_1 -> r_1) <-> (p_1 & q_1) -> r_1)]

Exportation : [(p_1 : prop), (q_1
: prop), (r_1 : prop) => (---
: that (p_1 -> q_1 -> r_1) <-> (p_1
& q_1) -> r_1)]

{move 0}
end Lestrade execution



Quantification

We introduce the universal quantifier and its

associated rules. Here we introduce a univer-

sal quantifier over the type obj of “untyped

mathematical objects” (which we will use to

implement sets).

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare x obj

x : obj

{move 1}

>>> declare pred [x => prop]

pred : [(x_1 : obj) => (--- : prop)]

{move 1}

>>> postulate Forall pred : prop

26



Forall : [(pred_1 : [(x_2 : obj) =>
(--- : prop)]) => (--- : prop)]

{move 0}

>>> declare univev that Forall pred

univev : that Forall (pred)

{move 1}

>>> declare y obj

y : obj

{move 1}

>>> postulate Ui univev y that pred y

Ui : [(.pred_1 : [(x_2 : obj) =>
(--- : prop)]), (univev_1

: that Forall (.pred_1)), (y_1
: obj) => (--- : that .pred_1 (y_1))]

{move 0}

>>> declare generalev [y => that pred \



y]

generalev : [(y_1 : obj) => (--- : that
pred (y_1))]

{move 1}

>>> postulate Ug generalev that Forall \
pred

Ug : [(.pred_1 : [(x_2 : obj) =>
(--- : prop)]), (generalev_1

: [(y_2 : obj) => (--- : that .pred_1
(y_2))]) => (--- : that Forall

(.pred_1))]

{move 0}

>>> postulate = x y prop

=: [(x_1 : obj), (y_1 : obj) =>
(--- : prop)]

{move 0}

>>> postulate Refleq x that x = x

Refleq : [(x_1 : obj) => (--- : that
x_1 = x_1)]



{move 0}

>>> define Ugtest : Ug Refleq

Ugtest : [
({def} Ug (Refleq) : that Forall
([(x’’_2 : obj) =>

({def} x’’_2 = x’’_2 : prop)]))]

Ugtest : that Forall ([(x’’_2 : obj) =>
({def} x’’_2 = x’’_2 : prop)])

{move 0}
end Lestrade execution



Some sorting out

We do some analysis of typing used here. To

begin with, the parameter pred (for “predi-

cate”) is quite naturally a function which takes

an object of sort obj as input and gives a

proposition (a truth value) as output. The uni-

versal quantifier itself is a gadget which takes

predicates as input and returns propositions as

output. The intention of course that that we

believe Forall pred to be the case if we believe

that pred x is true for any x.

27



Our philosophical motivation disinclines us to

claim that evidence for Forall pred consists of

evidence for pred x for each x of type obj in-

dividually: this would seem to entail having an

infinite body of evidence.

The rule Ui is a function which given (implic-

itly) a predicate pred and (explicitly) evidence

for Forall pred and an object y of sort obj,

returns evidence for pred y.

28



The typing of Ui and general consideration of

how we think about functions in Lestrade gives

the idea of what is happening: if we believe

(∀y : φ(y)) this means not that we believe each

φ(y) individually (that would be a lot of beliefs)

but that we have a machine which, presented

with an object x, spits back at us evidence for

φ(x)

The rule of universal generalization is similarly

motivated as a converse operation. The pa-

rameter generalev is a function which takes an

object y and returns evidence for φ(y): the

function Ug takes any such function as input

and returns evidence for (∀x : φ(x)). A dif-

ference between the treatment here and the

treatment in Automath is that the function Ug

would in effect be the identity: in Automath

the function generalev would simply be evi-

dence for (∀x : φ(x)) itself; our typing scheme

precludes this identification.

29



In our next block of Lestrade code, we declare
the other basic rule of equality (substitution).

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare x obj

x : obj

{move 1}

>>> declare y obj

y : obj

{move 1}

>>> declare eqev that x = y

eqev : that x = y

{move 1}

30



>>> declare pred [x => prop]

pred : [(x_1 : obj) => (--- : prop)]

{move 1}

>>> declare predev that pred x

predev : that pred (x)

{move 1}

>>> postulate Subs eqev predev that pred \
y

Subs : [(.x_1 : obj), (.y_1 : obj), (eqev_1
: that .x_1 = .y_1), (.pred_1 : [(x_2

: obj) => (--- : prop)]), (predev_1
: that .pred_1 (.x_1)) => (---
: that .pred_1 (.y_1))]

{move 0}

>>> define Subsfull pred eqev predev : Subs \
eqev predev

Subsfull : [(.x_1 : obj), (.y_1 : obj), (eqev_1
: that .x_1 = .y_1), (pred_1 : [(x_2

: obj) => (--- : prop)]), (predev_1



: that pred_1 (.x_1)) =>
({def} eqev_1 Subs predev_1 : that
pred_1 (.y_1))]

Subsfull : [(.x_1 : obj), (.y_1 : obj), (eqev_1
: that .x_1 = .y_1), (pred_1 : [(x_2

: obj) => (--- : prop)]), (predev_1
: that pred_1 (.x_1)) => (--- : that
pred_1 (.y_1))]

{move 0}
end Lestrade execution



Our reasons for supplying two different ver-
sions of Subs should be revealed here (along
with limitations of the implicit argument infer-
ence mechanism).

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare x obj

x : obj

{move 1}

>>> declare y obj

y : obj

{move 1}

>>> open

{move 2}

>>> declare eqev that x = y

31



eqev : that x = y

{move 2}

>>> declare z obj

z : obj

{move 2}

>>> define dudeqsymm eqev : Subs eqev \
(Refleq x)

dudeqsymm : [(eqev_1 : that x = y) =>
(--- : that y = y)]

{move 1}

>>> define eqsymm eqev : Subsfull eqev \
[z => z = x] (Refleq x)

eqsymm : [(eqev_1 : that x = y) =>
(--- : that y = x)]

{move 1}

>>> close



{move 1}

>>> define Eqsymm x y : Ded eqsymm

Eqsymm : [(x_1 : obj), (y_1 : obj) =>
({def} Ded ([(eqev_2 : that x_1

= y_1) =>
({def} Subsfull (eqev_2, [(z_3

: obj) =>
({def} z_3 = x_1 : prop)], Refleq

(x_1)) : that y_1 = x_1)]) : that
(x_1 = y_1) -> y_1 = x_1)]

Eqsymm : [(x_1 : obj), (y_1 : obj) =>
(--- : that (x_1 = y_1) -> y_1 = x_1)]

{move 0}
end Lestrade execution

The effect of Subs eqev predev, where predev

is evidence for pred x, is to replace x with y

in pred x. An important feature of Lestrade is

that we do not have to write a lambda term

representing pred on every occasion: the im-

plicit argument inference mechanism can often



deduce what predicate of x is intended. But

here we want to consider x = x as a predicate

of only the first occurrence of x, so we need to

use the form Subsfull which actually gives the

intended predicate as an explicit argument.



The Russell error

It’s an error, not a paradox, and it isn’t Rus-

sell’s error: he pointed it out and tried to fix

it. The Frege error?

It gives us an example of work with mathemat-

ical objects rather than proofs.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare x obj

x : obj

{move 1}

>>> declare y obj

y : obj

{move 1}

32



>>> declare pred [x => prop]

pred : [(x_1 : obj) => (--- : prop)]

{move 1}

>>> postulate E x y prop

E : [(x_1 : obj), (y_1 : obj) =>
(--- : prop)]

{move 0}

>>> postulate Setof pred obj

Setof : [(pred_1 : [(x_2 : obj) =>
(--- : prop)]) => (--- : obj)]

{move 0}

>>> declare inev that x E Setof pred

inev : that x E Setof (pred)

{move 1}

>>> postulate Comp1 inev that pred x



Comp1 : [(.x_1 : obj), (.pred_1 : [(x_2
: obj) => (--- : prop)]), (inev_1

: that .x_1 E Setof (.pred_1)) =>
(--- : that .pred_1 (.x_1))]

{move 0}

>>> declare predev that pred x

predev : that pred (x)

{move 1}

>>> postulate Comp2 x predev that x E Setof \
pred

Comp2 : [(x_1 : obj), (.pred_1 : [(x_2
: obj) => (--- : prop)]), (predev_1

: that .pred_1 (x_1)) => (--- : that
x_1 E Setof (.pred_1))]

{move 0}
end Lestrade execution

If you are beginning to understand the Lestrade
idiom, you should sense disaster looming. No-
tice that the Lestrade logic in itself gives us



no reason to believe the powerful assumptions

Comp1 and Comp2: its power and merit is that it

allows us to formulate these assumptions and

deduce their consequences.



We haven’t introduced a final tiny bit of logic

yet. After declaring the False and defining

negation, we carry out the proof that this is

all untenable. Our logic so far is constructive,

by the way.



begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare p prop

p : prop

{move 1}

>>> postulate False prop

False : prop

{move 0}

>>> define ~ p : p -> False

~: [(p_1 : prop) =>
({def} p_1 -> False : prop)]

~: [(p_1 : prop) => (--- : prop)]

{move 0}

>>> declare absurd that False

33



absurd : that False

{move 1}

>>> declare q prop

q : prop

{move 1}

>>> postulate Panic absurd q that q

Panic : [(absurd_1 : that False), (q_1
: prop) => (--- : that q_1)]

{move 0}

>>> declare x obj

x : obj

{move 1}

>>> define russell x : ~ (x E x)

russell : [(x_1 : obj) =>
({def} ~ (x_1 E x_1) : prop)]



russell : [(x_1 : obj) => (--- : prop)]

{move 0}

>>> define Russell : Setof russell

Russell : [
({def} Setof (russell) : obj)]

Russell : obj

{move 0}

>>> open

{move 2}

>>> declare dangerhyp that Russell \
E Russell

dangerhyp : that Russell E Russell

{move 2}

>>> define line1 dangerhyp : Comp1 \
dangerhyp



line1 : [(dangerhyp_1 : that Russell
E Russell) => (--- : that russell
(Russell))]

{move 1}

>>> define linea1 dangerhyp : Fixform \
(~ (Russell E Russell), line1 dangerhyp)

linea1 : [(dangerhyp_1 : that Russell
E Russell) => (--- : that ~ (Russell
E Russell))]

{move 1}

>>> define lineb1 dangerhyp : Fixform \
((Russell E Russell) -> False, line1 \
dangerhyp)

lineb1 : [(dangerhyp_1 : that Russell
E Russell) => (--- : that (Russell
E Russell) -> False)]

{move 1}

>>> define line2 dangerhyp : Mp dangerhyp \
(line1 dangerhyp)

line2 : [(dangerhyp_1 : that Russell



E Russell) => (--- : that False)]

{move 1}

>>> close

{move 1}

>>> define unfortunate : Fixform (~ (Russell \
E Russell), Ded line2)

unfortunate : [
({def} ~ (Russell E Russell) Fixform
Ded ([(dangerhyp_3 : that Russell

E Russell) =>
({def} dangerhyp_3 Mp Comp1 (dangerhyp_3) : that
False)]) : that ~ (Russell E Russell))]

unfortunate : that ~ (Russell E Russell)

{move 0}

>>> define moreunfortunate : Comp2 Russell \
unfortunate

moreunfortunate : [
({def} Russell Comp2 unfortunate : that
Russell E Setof ([(x’_3 : obj) =>

({def} ~ (x’_3 E x’_3) : prop)]))]



moreunfortunate : that Russell E Setof
([(x’_3 : obj) =>

({def} ~ (x’_3 E x’_3) : prop)])

{move 0}

>>> define moreunfortunate2 : Fixform \
(Russell E Russell, moreunfortunate)

moreunfortunate2 : [
({def} (Russell E Russell) Fixform
moreunfortunate : that Russell E Russell)]

moreunfortunate2 : that Russell E Russell

{move 0}

>>> define mostunfortunate : Mp moreunfortunate \
unfortunate

mostunfortunate : [
({def} moreunfortunate Mp unfortunate
: that False)]

mostunfortunate : that False

{move 0}
end Lestrade execution





And that about wraps it up for naive set theory.

An amusing technical point here is that we actually
made no use whatsoever of the logic of negation. No
special properties of False are used anywhere in this de-
velopment: this could be adapted into a proof of any
proposition at all, using only implication. (We presented
the rule Panic, but we never used it).

Here we have presented enough logic and ontology in
terms of Lestrade to get to a theory which was once
regarded as adequate for mathematics. The revisions
needed to formulate Zermelo set theory or type theory
should be imaginable at this point.

The fact that things that we would usually regard as
logical primitives (logical connectives, quantifiers and
their rules) need to be explicitly declared (and can be
declared in alternative forms if you prefer) is sometimes
expressed by saying that systems like Lestrade are “log-
ical frameworks” rather than being logics themselves.

34



Mathematics with typed objects
We present some basic declarations of familiar concepts using typed
objects. We begin with ordered pairs in a typed context and carte-
sian product types.

begin Lestrade execution

>>> clearcurrent

{move 1}

>>> declare sigma type

sigma : type

{move 1}

>>> declare tau type

tau : type

{move 1}

>>> declare x in sigma

x : in sigma

{move 1}

35



>>> declare y in tau

y : in tau

{move 1}

>>> postulate * sigma tau type

*: [(sigma_1 : type), (tau_1 : type) =>
(--- : type)]

{move 0}

>>> postulate ; x y in sigma * tau

;: [(.sigma_1 : type), (.tau_1 : type), (x_1
: in .sigma_1), (y_1 : in .tau_1) =>
(--- : in .sigma_1 * .tau_1)]

{move 0}

>>> declare z in sigma * tau

z : in sigma * tau

{move 1}



>>> postulate pi1 z in sigma

pi1 : [(.sigma_1 : type), (.tau_1
: type), (z_1 : in .sigma_1 * .tau_1) =>
(--- : in .sigma_1)]

{move 0}

>>> postulate pi2 z in tau

pi2 : [(.sigma_1 : type), (.tau_1
: type), (z_1 : in .sigma_1 * .tau_1) =>
(--- : in .tau_1)]

{move 0}
end Lestrade execution

This should look suspiciously familiar: in fact, it is parallel in every
detail to the declaration of the logical operation of conjunction
and its rules, an instance of the Curry Howard isomorphism. In the
context of objects rather than proofs, we would like to say a little
more.



begin Lestrade execution

>>> declare x2 in sigma

x2 : in sigma

{move 1}

>>> postulate == x x2 prop

==: [(.sigma_1 : type), (x_1 : in
.sigma_1), (x2_1 : in .sigma_1) =>
(--- : prop)]

{move 0}

>>> postulate Refleqt x that x == x

Refleqt : [(.sigma_1 : type), (x_1
: in .sigma_1) => (--- : that x_1
== x_1)]

{move 0}

>>> declare eqevt that x == x2

eqevt : that x == x2

36



{move 1}

>>> declare predt [x => prop]

predt : [(x_1 : in sigma) => (---
: prop)]

{move 1}

>>> declare predevt that predt x

predevt : that predt (x)

{move 1}

>>> postulate Subst eqevt predevt that \
predt x2

Subst : [(.sigma_1 : type), (.x_1
: in .sigma_1), (.x2_1 : in .sigma_1), (eqevt_1
: that .x_1 == .x2_1), (.predt_1
: [(x_2 : in .sigma_1) => (---

: prop)]), (predevt_1 : that
.predt_1 (.x_1)) => (--- : that
.predt_1 (.x2_1))]

{move 0}

>>> postulate Proj1 x y that pi1 (x ; y) == \



x

Proj1 : [(.sigma_1 : type), (.tau_1
: type), (x_1 : in .sigma_1), (y_1
: in .tau_1) => (--- : that pi1 (x_1
; y_1) == x_1)]

{move 0}

>>> postulate Proj2 x y that pi2 (x ; y) == \
y

Proj2 : [(.sigma_1 : type), (.tau_1
: type), (x_1 : in .sigma_1), (y_1
: in .tau_1) => (--- : that pi2 (x_1
; y_1) == y_1)]

{move 0}
end Lestrade execution

Above we introduced the notion of equality for typed objects. No-
tice that the fact that this is a dependently typed ternary relation
is hidden: the implicit argument inference mechanism allows us to
treat it as in effect an overloaded binary relation which has an in-
stance on each type. We are then able to supply crucial additonal
information about the projection operators which we do not usually
want about their analogues in the propositional realm, the rules of
simplification. We could install similar additional rules on the proof
side if we had a use for them.



Conclusions to be drawn?
I’m hoping to illustrate implicitly in the course of these examples
that Lestrade is a usable logical framework. It quite deliberately
has very little built into it: this means that our initial examples will
be about very basic things.

Lestrade is not really as verbose as it appears to be: the backtalk
from the interpreter provides most of the volume of the pieces
of Lestrade text here. Of course, the backtalk makes it easier
to understand the Lestrade text. If one is driving the Inspector
interactively, commands are provided which allow you to view the
declarations of identifiers, test terms for well-typedness, and so
farth.

The principal disadvantage that the system has at the moment is
slowness. This is tied up with the expanson of definitions as one
emerges from later to earlier moves and discards local declarations.
There are ways to reduce these problems.

There is a very large implementation example (which we may look
at), an implementation of the core of Zermelo’s 1908 proof of the
well-ordering theorem. This will both illustrate how something ap-
proaching the full foundatational scheme of modern classical math-
ematics is implemented in Lestrade, and allow us to view some mag-
nificantly large output terms illustrating the problem mentioned in
the previous paragraph.

37


